Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 12(1): 4163, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1799572

RESUMEN

SARS-CoV-2 and its variants have persisted in this ongoing COVID-19 pandemic. While the vaccines have greatly reduced the COVID-19 cases, hospitalizations, and death, about half of the world remain unvaccinated due to various reasons. Furthermore, the duration of the immunity gained from COVID-19 vaccination is still unclear. Therefore, there is a need for innovative prophylactic and treatment measures. In response to this need, we previously reported on the successful computer-aided development of potent VHH-based multispecific antibodies that were characterized in vitro. Here, we evaluated in vivo efficacy and safety of the lead trispecific VHH-Fc, ABS-VIR-001. Importantly, our data showed that ABS-VIR-001 treatment prevented SARS-CoV-2 infection and death when provided as an intranasal prophylaxis in a humanized ACE-2 mouse model. In addition, ABS-VIR-001 post-exposure treatment was shown to greatly reduce viral loads by as much as 50-fold. A detailed panel of metabolic and cellular parameters demonstrated that ABS-VIR-001 treatment was overall comparable to the PBS treatment, indicating a favorable safety profile. Notably, our inhibition studies show that ABS-VIR-001 continued to demonstrate unwavering efficacy against SARS-CoV-2 mutants, associated with key variants including Delta and Omicron, owing to its multiple epitope design. Lastly, we rigorously tested and confirmed the excellent thermostability of ABS-VIR-001 when heated to 45 °C for up to 4 weeks. Taken together, our study suggests that ABS-VIR-001 is an efficacious and durable prophylaxis and post-exposure treatment for COVID-19 with promising safety and manufacturability features for global distribution.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/uso terapéutico , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Reacciones Antígeno-Anticuerpo/efectos de los fármacos , Biomarcadores/metabolismo , COVID-19/virología , Estabilidad de Medicamentos , Humanos , Huésped Inmunocomprometido , Ratones , Ratones Transgénicos , SARS-CoV-2/aislamiento & purificación , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral
2.
MAbs ; 14(1): 2047144, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1740685

RESUMEN

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Anticuerpos ampliamente neutralizantes/metabolismo , COVID-19/inmunología , Pulmón/patología , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Sitios de Unión/genética , Anticuerpos ampliamente neutralizantes/inmunología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Mesocricetus , Nebulizadores y Vaporizadores , Unión Proteica , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral
3.
Front Immunol ; 12: 838082, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1674340

RESUMEN

Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.


Asunto(s)
Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/uso terapéutico , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/terapia , Humanos , Inmunomodulación , Imagen Molecular , Terapia Molecular Dirigida , Neoplasias/diagnóstico por imagen , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Anticuerpos de Dominio Único/inmunología
4.
PLoS Comput Biol ; 17(12): e1009675, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1619980

RESUMEN

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.


Asunto(s)
Antígenos Virales/química , COVID-19/inmunología , COVID-19/virología , Epítopos de Linfocito B/química , SARS-CoV-2/química , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/genética , Reacciones Antígeno-Anticuerpo/genética , Reacciones Antígeno-Anticuerpo/inmunología , Biología Computacional , Coronavirus/química , Coronavirus/genética , Coronavirus/inmunología , Bases de Datos de Compuestos Químicos , Mapeo Epitopo , Epítopos de Linfocito B/genética , Humanos , Ratones , Modelos Moleculares , Pandemias , SARS-CoV-2/genética , Anticuerpos de Dominio Único/inmunología
5.
Nat Commun ; 13(1): 155, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1616979

RESUMEN

Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Biespecíficos/metabolismo , COVID-19/virología , Chlorocebus aethiops , Microscopía por Crioelectrón , Células HEK293 , Humanos , Ratones Transgénicos , Pruebas de Neutralización/métodos , Unión Proteica , Conformación Proteica , Multimerización de Proteína/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
6.
Anal Biochem ; 640: 114546, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1611552

RESUMEN

PURPOSE: The newly emerged coronavirus (SARS-CoV-2) continues to infect humans, and no completely efficient treatment has yet been found. Antibody therapy is one way to control infection caused by COVID-19, but the use of classical antibodies has many disadvantages. Heavy chain antibodies (HCAbs) are single-domain antibodies derived from the Camelidae family. The variable part of these antibodies (Nanobodies or VHH) has interesting properties such as small size, identify criptic epitopes, stability in harsh conditions, good tissue permeability and cost-effective production causing nanobodies have become a good candidate in the treatment and diagnosis of viral infections. METHODS: Totally 157 records (up to November 10, 2021), were recognized to be reviewed in this study. 62 studies were removed after first step screening due to their deviation from inclusion criteria. The remaining 95 studies were reviewed in details. After removing articles that were not in the study area, 45 remaining studies met the inclusion criteria and were qualified to be included in the systematic review. RESULTS: In this systematic review, the application of nanobodies in the treatment and detection of COVID-19 infection was reviewed. The results of this study showed that extensive and sufficient studies have been performed in the field of production of nanobodies against SARS-CoV-2 virus and the obtained nanobodies have a great potential for use in patients infected with SARS-CoV-2 virus. CONCLUSION: According to the obtained results, it was found that nanobodies can be used effectively in the treatment and diagnosis of SARS-CoV-2 virus.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , COVID-19/diagnóstico , COVID-19/terapia , Humanos
7.
MAbs ; 14(1): 2002236, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1585298

RESUMEN

Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Técnicas de Visualización de Superficie Celular , Inmunoglobulina G/inmunología , Biblioteca de Péptidos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , COVID-19/metabolismo , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Epítopos , Femenino , Interacciones Huésped-Patógeno , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Mesocricetus , SARS-CoV-2/patogenicidad , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología , Células Vero
8.
Structure ; 30(3): 418-429.e3, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1559760

RESUMEN

Nanobodies (Nbs) have emerged as a promising class of biologics. Despite having marked physicochemical properties, Nbs are derived from camelids and may require humanization to improve translational potentials. By systematically analyzing the sequence and structural properties of Nbs, we found substantial framework diversities and revealed the key differences between Nbs and human immunoglobulin G antibodies. We identified conserved residues that may contribute to enhanced solubility, structural stability, and antigen binding, providing insights into Nb humanization. Based on big data analysis, we developed "Llamanade," an open-source software to facilitate rational humanization of Nbs. Using sequence as input, Llamanade can rapidly extract sequence features, model structures, and optimize solutions to humanize Nbs. Finally, we used Llamanade to successfully humanize a cohort of structurally diverse and potent SARS-CoV-2 neutralizing Nbs. Llamanade is freely available and will be easily accessible on a server to support the development of therapeutic Nbs into safe and effective trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anticuerpos de Dominio Único/química
9.
Elife ; 102021 12 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1555771

RESUMEN

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Camélidos del Nuevo Mundo/inmunología , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Humanos , Masculino , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
10.
Viruses ; 13(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1502530

RESUMEN

Nanobodies are 130 amino acid single-domain antibodies (VHH) derived from the unique heavy-chain-only subclass of Camelid immunogloblins. Their small molecular size, facile expression, high affinity and stability have combined to make them unique targeting reagents with numerous applications in the biomedical sciences. The first nanobody agent has now entered the clinic as a treatment against a blood disorder. The spread of the SARS-CoV-2 virus has seen the global scientific endeavour work to accelerate the development of technologies to try to defeat a pandemic that has now killed over four million people. In a remarkably short period of time, multiple studies have reported nanobodies directed against the viral Spike protein. Several agents have been tested in culture and demonstrate potent neutralisation of the virus or pseudovirus. A few agents have completed animal trials with very encouraging results showing their potential for treating infection. Here, we discuss the structural features that guide the nanobody recognition of the receptor binding domain of the Spike protein of SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/química , Anticuerpos de Dominio Único/química , Glicoproteína de la Espiga del Coronavirus/química , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/terapia , COVID-19/virología , Epítopos/química , Humanos , Mutación , Unión Proteica , Conformación Proteica , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
J Biol Chem ; 298(1): 101290, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1472024

RESUMEN

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Cricetinae , Electroforesis en Gel de Poliacrilamida , Humanos , Límite de Detección , Proteínas de la Nucleocápside/inmunología
12.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1470027

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , COVID-19/inmunología , COVID-19/prevención & control , Pandemias , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Camélidos del Nuevo Mundo/inmunología , Femenino , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunización Secundaria , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Pandemias/prevención & control , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/genética , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
13.
Mol Biol Rep ; 49(1): 647-656, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1465893

RESUMEN

The severe acute respiratory syndrome (SARS-CoV-2), a newly emerging of coronavirus, continues to infect humans in the absence of a viable treatment. Neutralizing antibodies that disrupt the interaction of RBD and ACE2 has been under the spotlight as a way of developing the COVID-19 treatment. Some animals, such as llamas, manufacture heavy-chain antibodies that have a single variable domain (VHH) instead of two variable domains (VH/VL) as opposed to typical antibodies. Nanobodies are antigen-specific, single-domain, changeable segments of camelid heavy chain-only antibodies that are recombinantly produced. These types of antibodies exhibit a wide range of strong physical and chemical properties, like high solubility, and stability. The VHH's high-affinity attachment to the receptor-binding domain (RBD) allowed the neutralization of SARS-CoV-2. To tackle COVID-19, some nanobodies are being developed against SARS-CoV-2, some of which have been recently included in clinical trials. Nanobody therapy may be useful in managing the COVID-19 pandemic as a potent and low-cost treatment. This paper describes the application of nanobodies as a new class of recombinant antibodies in COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos de Dominio Único , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , COVID-19/inmunología , COVID-19/terapia , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
14.
FASEB J ; 35(11): e21970, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1462503

RESUMEN

Single domain shark variable domain of new antigen receptor (VNAR) antibodies can offer a viable alternative to conventional Ig-based monoclonal antibodies in treating COVID-19 disease during the current pandemic. Here we report the identification of neutralizing single domain VNAR antibodies selected against the severe acute respiratory syndrome coronavirus 2 spike protein derived from the Wuhan variant using phage display. We identified 56 unique binding clones that exhibited high affinity and specificity to the spike protein. Of those, 10 showed an ability to block both the spike protein receptor binding domain from the Wuhan variant and the N501Y mutant from interacting with recombinant angiotensin-converting enzyme 2 (ACE2) receptor in vitro. In addition, three antibody clones retained in vitro blocking activity when the E484K spike protein mutant was used. The inhibitory property of the VNAR antibodies was further confirmed for all 10 antibody clones using ACE2 expressing cells with spike protein from the Wuhan variant. The viral neutralizing potential of the VNAR clones was also confirmed for the 10 antibodies tested using live Wuhan variant virus in in vitro cell infectivity assays. Single domain VNAR antibodies, due to their low complexity, small size, unique epitope recognition, and formatting flexibility, should be a useful adjunct to existing antibody approaches to treat COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , Chlorocebus aethiops , Humanos , Unión Proteica , Tiburones/inmunología , Células Vero
15.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1462069

RESUMEN

We describe a general method that allows structure determination of small proteins by single-particle cryo-electron microscopy (cryo-EM). The method is based on the availability of a target-binding nanobody, which is then rigidly attached to two scaffolds: 1) a Fab fragment of an antibody directed against the nanobody and 2) a nanobody-binding protein A fragment fused to maltose binding protein and Fab-binding domains. The overall ensemble of ∼120 kDa, called Legobody, does not perturb the nanobody-target interaction, is easily recognizable in EM images due to its unique shape, and facilitates particle alignment in cryo-EM image processing. The utility of the method is demonstrated for the KDEL receptor, a 23-kDa membrane protein, resulting in a map at 3.2-Šoverall resolution with density sufficient for de novo model building, and for the 22-kDa receptor-binding domain (RBD) of SARS-CoV-2 spike protein, resulting in a map at 3.6-Šresolution that allows analysis of the binding interface to the nanobody. The Legobody approach thus overcomes the current size limitations of cryo-EM analysis.


Asunto(s)
Microscopía por Crioelectrón/métodos , SARS-CoV-2/metabolismo , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión/inmunología , COVID-19/virología , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/ultraestructura
16.
J Chem Inf Model ; 61(10): 5152-5160, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1440449

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human cells upon binding of its spike (S) glycoproteins to ACE2 receptors. Several nanobodies neutralize SARS-CoV-2 infection by binding to the receptor-binding domain (RBD) of the S protein, but how their binding antagonizes S-ACE2 interactions is not well understood. Here, we identified interactions between the RBD and nanobodies H11-H4, H11-D4, and Ty1 by performing all-atom molecular dynamics simulations. H11-H4 and H11-D4 can bind to RBD without overlapping with ACE2. H11-H4, and to a lesser extent H11-D4, binding dislocates ACE2 from its binding site due to electrostatic repulsion. In comparison, Ty1 overlaps with ACE2 on RBD and has a similar binding strength to ACE2. Mutations in the Alpha variant of SARS-CoV-2 had a minor effect in RBD binding strengths of ACE2 and nanobodies, but reduced the ability of H11-H4 and H11-D4 to dislocate ACE2 from RBD. In comparison, the Beta variant weakened the RBD binding strengths of H11-H4 and H11-D4, which were less effective to dislocate ACE2 binding. Unexpectedly, mutations in Beta strengthened Ty1 binding to RBD, suggesting that this nanobody may be more effective to neutralize the Beta variant of SARS-CoV-2.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Humanos , Unión Proteica , SARS-CoV-2
17.
Nat Commun ; 12(1): 5469, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1434103

RESUMEN

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Administración Intranasal , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos/química , Epítopos/metabolismo , Femenino , Masculino , Mesocricetus , Pruebas de Neutralización , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
18.
J Biol Chem ; 297(4): 101202, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1428100

RESUMEN

Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.


Asunto(s)
Complejo Antígeno-Anticuerpo , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Alineación de Secuencia , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
19.
Front Immunol ; 12: 690742, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1389184

RESUMEN

Since December 2019, the SARS-CoV-2 has erupted on a large scale worldwide and spread rapidly. Passive immunization of antibody-related molecules provides opportunities for prevention and treatment of high-risk patients and children. Nanobodies (Nbs) have many strong physical and chemical properties. They can be atomized, administered by inhalation, and can be directly applied to the infected site, with fast onset, high local drug concentration/high bioavailability, and high patient compliance (no needles). It has very attractive potential in the treatment of respiratory viruses. Rapid and low-cost development of Nbs targeting SARS-CoV-2 can quickly be achieved. Nbs against SARS-CoV-2 mutant strains also can be utilized quickly to prevent the virus from escaping. It provides important technical supports for the treatment of the SARS-CoV-2 and has the potential to become an essential medicine in the toolbox against the SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Afinidad de Anticuerpos/inmunología , Sitios de Unión , Epítopos/inmunología , Humanos , Pruebas de Neutralización , Biblioteca de Péptidos , Unión Proteica
20.
Biomolecules ; 10(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1383863

RESUMEN

Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , COVID-19/virología , Química Clic , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA